Wavelets and Estimation of Long Memory in Log Volatility and Time Series Perturbed by Noise

نویسنده

  • Milan Bašta
چکیده

Percival and Walden (2002) present a wavelet methodology of the least squaresestimation of the long memory parameter for fractionally differenced processes. Wesuggest that the general idea of using wavelets for estimating long memory could beused for the estimation of long memory in time series perturbed by noise. One prominentexample thereof is the time series of log-Garman-Klass estimates of log volatility of fi nan-cial markets. The estimator of Percival and Walden (2002) is biased if the long memorytime series is perturbed by noise. We propose a new estimator of the long memory param-eter which combines (in its construction) the frequency-domain approach of Sun & Phillips(2003) and the approach of Percival & Walden (2002). We illustrate the properties of theproposed estimator via Monte Carlo simulations. The results show that the estimator maybe useful for the estimation of the long memory in volatility.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semiparametric estimation in perturbed long memory series

The estimation of the memory parameter in perturbed long memory series has recently attracted attention motivated especially by the strong persistence of the volatility in many financial and economic time series and the use of Long Memory in Stochastic Volatility (LMSV) processes to model such a behaviour. This paper discusses frequency domain semiparametric estimation of the memory parameter a...

متن کامل

Augmented log-periodogram regression in long memory signal plus noise models

The estimation of the memory parameter in perturbed long memory series has recently attracted attention motivated especially by the strong persistence of the volatility of many financial and economic time series and the use of Long Memory in Stochastic Volatility (LMSV) processes to model such a behaviour. This paper proposes an extension of the log periodogram regression which explicitly accou...

متن کامل

Time-Varying Long-Memory in Volatility: Detection and Estimation with Wavelets

Previous analysis of high frequency nancial time series data has found volatility to follow a long-memory process and to display an intradaily U-shape pattern. These ndings implicitly assume that a stable environment exists in the nancial world. To better capture the nonstationary behavior associated with market collapses, political upheavals and news annoucements, we propose a nonstationary cl...

متن کامل

On the Log Periodogram Regression Estimator of the Memory Parameter in Long Memory Stochastic Volatility Models

We consider semiparametric estimation of the memory parameter in a long memory stochastic volatility model+ We study the estimator based on a log periodogram regression as originally proposed by Geweke and Porter-Hudak ~1983, Journal of Time Series Analysis 4, 221–238!+ Expressions for the asymptotic bias and variance of the estimator are obtained, and the asymptotic distribution is shown to be...

متن کامل

Some New Methods for Prediction of Time Series by Wavelets

Extended Abstract. Forecasting is one of the most important purposes of time series analysis. For many years, classical methods were used for this aim. But these methods do not give good performance results for real time series due to non-linearity and non-stationarity of these data sets. On one hand, most of real world time series data display a time-varying second order structure. On th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012